BOSTON, MA, USA and LONDON, UK I April 27, 2020 IOrchard Therapeutics (Nasdaq: ORTX), a global gene therapy leader, today announced that the first patient has been dosed in an open-label, proof-of-concept investigational study of OTL-201, an ex vivo autologous hematopoietic stem cell (HSC) gene therapy for the treatment of mucopolysaccharidosis type IIIA (MPS-IIIA). The study is designed to evaluate safety, tolerability and clinical efficacy and is intended to enroll up to five patients between three months and 24 months of age who will be followed for three years. The study also contains a number of key secondary outcome measures such as overall survival, cognition and behavior to help inform future clinical development of HSC gene therapy in this indication.
MPS-IIIA, also known as Sanfilippo syndrome type A, is a rare, inherited neurometabolic disorder caused by genetic mutations that leads to the buildup of sugar molecules called mucopolysaccharides in the body, resulting in progressive intellectual disability and loss of motor function. Children born with MPS-IIIA rarely live past adolescence or early adulthood, and no approved therapies currently exist to treat the disease.
“I am very encouraged that we, together with our research and clinical collaborators in Manchester, could achieve this important milestone in our efforts to develop a gene therapy for MPS-IIIA despite the current, challenging global health circumstances,” said Bobby Gaspar, M.D., Ph.D., chief executive officer of Orchard. “It is a testament to the dedication of our collective teams and underscores the truly dire, life-limiting nature of the disease for affected children and their families. This study adds to Orchard’s clinical pipeline of HSC gene therapies for the treatment of severe neurometabolic disorders and further demonstrates the potential of our platform approach.”
About MPS-IIIA
Mucopolysaccharidosis type IIIA (MPS-IIIA, also known as Sanfilippo syndrome type A) is a rare and life-threatening metabolic disease. People with MPS-IIIA are born with a mutation in the N-sulphoglucosamine sulphohydrolase (SGSH) gene, which, when healthy, helps the body break down sugar molecules called mucopolysaccharides. The buildup of mucopolysaccharides in the brain and other tissues leads to intellectual disability and loss of motor function. MPS-IIIA occurs in approximately one in every 100,000 live births. Life expectancy of children born with MPS-IIIA is estimated to be between 10-25 years.
About Orchard
Orchard Therapeutics is a global gene therapy leader dedicated to transforming the lives of people affected by rare diseases through the development of innovative, potentially curative gene therapies. Our ex vivo autologous gene therapy approach harnesses the power of genetically-modified blood stem cells and seeks to correct the underlying cause of disease in a single administration. The company has one of the deepest gene therapy product candidate pipelines in the industry and is advancing seven clinical-stage programs across multiple therapeutic areas, including inherited neurometabolic disorders, primary immune deficiencies and blood disorders, where the disease burden on children, families and caregivers is immense and current treatment options are limited or do not exist.
Orchard has its global headquarters in London and U.S. headquarters in Boston. For more information, please visit www.orchard-tx.com, and follow us on Twitter and LinkedIn.
SOURCE: Orchard Therapeutics
Post Views: 1,491
BOSTON, MA, USA and LONDON, UK I April 27, 2020 IOrchard Therapeutics (Nasdaq: ORTX), a global gene therapy leader, today announced that the first patient has been dosed in an open-label, proof-of-concept investigational study of OTL-201, an ex vivo autologous hematopoietic stem cell (HSC) gene therapy for the treatment of mucopolysaccharidosis type IIIA (MPS-IIIA). The study is designed to evaluate safety, tolerability and clinical efficacy and is intended to enroll up to five patients between three months and 24 months of age who will be followed for three years. The study also contains a number of key secondary outcome measures such as overall survival, cognition and behavior to help inform future clinical development of HSC gene therapy in this indication.
MPS-IIIA, also known as Sanfilippo syndrome type A, is a rare, inherited neurometabolic disorder caused by genetic mutations that leads to the buildup of sugar molecules called mucopolysaccharides in the body, resulting in progressive intellectual disability and loss of motor function. Children born with MPS-IIIA rarely live past adolescence or early adulthood, and no approved therapies currently exist to treat the disease.
“I am very encouraged that we, together with our research and clinical collaborators in Manchester, could achieve this important milestone in our efforts to develop a gene therapy for MPS-IIIA despite the current, challenging global health circumstances,” said Bobby Gaspar, M.D., Ph.D., chief executive officer of Orchard. “It is a testament to the dedication of our collective teams and underscores the truly dire, life-limiting nature of the disease for affected children and their families. This study adds to Orchard’s clinical pipeline of HSC gene therapies for the treatment of severe neurometabolic disorders and further demonstrates the potential of our platform approach.”
About MPS-IIIA
Mucopolysaccharidosis type IIIA (MPS-IIIA, also known as Sanfilippo syndrome type A) is a rare and life-threatening metabolic disease. People with MPS-IIIA are born with a mutation in the N-sulphoglucosamine sulphohydrolase (SGSH) gene, which, when healthy, helps the body break down sugar molecules called mucopolysaccharides. The buildup of mucopolysaccharides in the brain and other tissues leads to intellectual disability and loss of motor function. MPS-IIIA occurs in approximately one in every 100,000 live births. Life expectancy of children born with MPS-IIIA is estimated to be between 10-25 years.
About Orchard
Orchard Therapeutics is a global gene therapy leader dedicated to transforming the lives of people affected by rare diseases through the development of innovative, potentially curative gene therapies. Our ex vivo autologous gene therapy approach harnesses the power of genetically-modified blood stem cells and seeks to correct the underlying cause of disease in a single administration. The company has one of the deepest gene therapy product candidate pipelines in the industry and is advancing seven clinical-stage programs across multiple therapeutic areas, including inherited neurometabolic disorders, primary immune deficiencies and blood disorders, where the disease burden on children, families and caregivers is immense and current treatment options are limited or do not exist.
Orchard has its global headquarters in London and U.S. headquarters in Boston. For more information, please visit www.orchard-tx.com, and follow us on Twitter and LinkedIn.
SOURCE: Orchard Therapeutics
Post Views: 1,491