University of Southampton and Inovio Pharmaceuticals Initiate Phase 2 Clinical Study to Evaluate Leukemia DNA Vaccine Using Electroporation Delivery Technology

Inovio Pharmaceuticals announced the regulatory approval of a Phase 2 clinical trial (WIN Trial) to treat leukemia utilizing Inovio's new ELGEN 1000 automated vaccine delivery device

BLUE BELL, PA, USA | January 31, 2011 | Inovio Pharmaceuticals, Inc. (NYSE Amex: INO), a leader in the development of therapeutic and preventive vaccines against cancers and infectious diseases, announced today the regulatory approval of a Phase 2 clinical trial (WIN Trial) to treat leukemia utilizing Inovio's new ELGEN 1000 automated vaccine delivery device. This open-label, multi-center clinical trial being run by the University of Southampton is evaluating a DNA vaccine to treat chronic myeloid leukemia and acute myeloid leukemia. Financial support for the trial is being provided by the UK research charity Leukaemia and Lymphoma Research (LLR) and by the Efficacy and Mechanisms Evaluation (EME) programme (which is funded by the UK Medical Research Council and managed by the UK National Institute for Health Research). The DNA vaccine was developed at the University of Southampton with funding from LLR and the charity Cancer Research UK.

Leukemia is a cancer of the bone marrow and blood that accounts for at least 300,000 new cases and 222,000 deaths worldwide each year - a very high death rate. Wilms' Tumor gene 1 (WT1) is highly associated with these types of cancer, which led the University of Southampton to design its leukemia DNA vaccine to target this antigen. Preclinical data from mice showed strong induction of antigen-specific CD8+ T cells and the ability to kill human tumor cells expressing WT1. There have been several prior clinical studies in humans using parts of the WT1 gene, notably as peptide vaccine candidates, demonstrating the production of modest levels of CD8+ T-cell responses and measurable clinical responses, although both effects were transient. This will be the first study to combine DNA vaccination with electroporation delivery of WT1 antigens with the goal of stimulating high and durable levels of immune responses, critical for improving clinical outcomes.

The principal investigator of this study, Dr. Christian H. Ottensmeier, MD, PhD, Professor of Experimental Cancer Research at the University of Southampton, said, "Wilms' Tumor gene 1 has emerged as one of the most promising targets for immunotherapy of blood malignancies including chronic myeloid leukemia (CML) and acute myeloid leukemia (AML). We previously reported strong immune responses in our prostate cancer vaccine trial using a similar DNA-electroporation approach. In that trial, patients with relapsed prostate cancer showed vaccine-induced immune responses that persisted to the end of the trial follow-up at 18 months. We are excited to extend this promising vaccine approach to CML and AML, for which better treatment options are sorely needed. This trial will evaluate the WT1 DNA vaccine in two parallel settings with the purpose of identifying the most promising path forward for a pivotal Phase 3 clinical trial."

Dr. David Grant, Scientific Director of Leukaemia and Lymphoma Research said: "It is an important step for us to see the laboratory work on DNA vaccines that LLR has supported take the next logical step into clinical testing. The trial has undergone extensive international peer review and we are delighted to see this trial in leukemia go ahead. We believe that this vaccine has real promise to improve outcomes in patients with leukemia."

The single dose level, Phase 2 study, called "WT1 immunity via DNA fusion gene vaccination in haematological malignancies by intramuscular injection followed by intramuscular electroporation," led by Professor Ottensmeier and Dr. Katy Rezvani of Imperial College London and Hammersmith Hospital, London, is designed to recruit two patient groups. One group is planned to recruit up to 37 CML patients and the other up to 37 AML patients. All participants will initially receive six doses of two DNA vaccines (called p.DOM-WT1-37 and p.DOM-WT1-126) delivered at four week intervals. Vaccine responders may continue with booster vaccinations every three months out to 24 months. An additional 100-110 AML/CML patients will be enrolled across the two arms as non-vaccinated controls for comparison. The primary endpoints will be molecular response to a disease marker called BCR-ABL in CML patients and time to disease progression in AML patients. The study will also monitor WT1 transcript levels, immune responses to the WT1 antigen, time to progression and overall survival, and two-year survival in the AML group. The trial will take place at hospitals in Southampton, London and Exeter over the next two years. Regulatory approval to start this clinical study was provided by the UK Medicines and Healthcare Products Regulatory Authority (MHRA) and Gene Technology Advisory Committee (GTAC).

This is the first clinical trial using Inovio's new ELGEN-1000 automated device, which is based on its proprietary electroporation delivery platform. The device's needle electrodes automate vaccine delivery at the push of a button and co-locate subsequent controlled, millisecond electrical pulses that increase cell membrane permeability and dramatically improve cellular uptake of the vaccine. Inovio's electroporation systems have been shown to increase levels of gene expression (production of the antigen coded by the DNA vaccine) up to 1000-fold and increase immune responses to the antigen up to 100-fold.

Inovio's CEO, Dr. J. Joseph Kim, said, "This leukemia study expands Inovio's long-standing relationship with the University of Southampton into an important disease area and moves our first fully automated injection-electroporation delivery product into human studies. This program could further validate the ability of Inovio's DNA vaccines and delivery platform to generate clinically relevant immune responses and effects. We are proud that Inovio will make a significant contribution to this Phase 2 trial for these cancers with clear unmet medical needs."

About Leukemia

Leukemia is a malignant disease (cancer) of the bone marrow and blood characterized by the uncontrolled accumulation of blood cells. Leukemia accounts for at least 300,000 new cases and 222,000 deaths worldwide each year. This high ratio of deaths-to-cases (74%) reflects the poor prognosis of leukemia in many parts of the world, where the somewhat complex treatment regimes are not available. Approximately 45,000 new cases of leukemia were diagnosed in 2008 in the US, with 20,000 deaths. This represents 3% of all cancers in the United States, and 30.4% of all blood cancers. It is estimated that approximately $3 billion is spent in the United States each year to treat leukemia.

There are five types of leukemia based on rate of development and types of blood cells affected. Two of these are being evaluated in the study discussed in this release: 1) Acute myeloid leukemia (AML), a cancer of the myeloid line of blood cells, is characterized by rapid growth of abnormal white blood cells that accumulate in the bone marrow and interfere with the production of normal blood cells. AML is the most common acute leukemia affecting adults and its incidence increases with age. Only about one-third of those between ages 18–60 who are diagnosed with AML can be cured. With conventional chemotherapy 70% of the patients in the group under study will relapse within 2 years and current therapy is devastating in older adults; and 2) Chronic myeloid leukemia (CML) is a type of cancer that causes the body to produce large numbers of immature and mature white blood cells (myelocytes). Approximately 85% of patients with CML are in the chronic phase at the time of diagnosis. Ultimately, in the absence of curative treatment, the disease progresses to an accelerated phase where median survival is around 3-5 years. Chronic myeloid leukemia can occur at any age, but it more commonly affects middle-aged and older people.

About Inovio Pharmaceuticals, Inc.

Inovio is developing a new generation of vaccines, called DNA vaccines, to treat and prevent cancers and infectious diseases. These SynCon™ vaccines are designed to provide broad cross-strain protection against known as well as newly emergent strains of pathogens such as influenza. These vaccines, in combination with Inovio's proprietary electroporation delivery devices, have been shown to be safe and generate significant immune responses. Inovio's clinical programs include HPV/cervical dysplasia and cancer (therapeutic), avian flu (preventive), and HIV vaccines (both preventive and therapeutic). Inovio is developing universal influenza and other vaccines in collaboration with scientists from the University of Pennsylvania. Other partners and collaborators include Merck, National Cancer Institute, U.S. Military HIV Research Program, NIH, HIV Vaccines Trial Network, University of Southampton, and PATH Malaria Vaccine Initiative. More information is available at

About the University of Southampton

The University of Southampton is a leading UK teaching and research institution with a global reputation for leading-edge research and scholarship across a wide range of subjects in engineering, science, social sciences, health and humanities.

With over 22,000 students, around 5000 staff, and an annual turnover well in excess of 400 million pounds Sterling, the University of Southampton is acknowledged as one of the country's top institutions for engineering, computer science and medicine. We combine academic excellence with an innovative and entrepreneurial approach to research, supporting a culture that engages and challenges students and staff in their pursuit of learning.

The University is also home to a number of world-leading research centres including the Institute of Sound and Vibration Research, the Optoelectronics Research Centre, the Web Science Research Initiative, the Centre for the Developmental Origins of Health and Disease, the Southampton Statistical Sciences Research Institute and is a partner of the National Oceanography Centre at the Southampton waterfront campus.

About Imperial College Healthcare NHS Trust

Imperial College Healthcare NHS Trust comprises Charing Cross, Hammersmith Hospital, Queen Charlotte's & Chelsea, St Mary's and Western Eye hospitals. It is one of the largest Trusts in the country, and in partnership with Imperial College London, is the UK's first Academic Health Science Centre (AHSC). The AHSC was created to take the research discoveries it makes and translate them into new and improved treatments and techniques to directly benefit patients throughout the Trust and beyond.

About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

About Cancer Research UK

Cancer Research UK is the world's leading cancer charity dedicated to saving lives through research.

* The charity's groundbreaking work into the prevention, diagnosis and treatment of cancer has helped save millions of lives. This work is funded entirely by the public.
* Cancer Research UK has been at the heart of the progress that has already seen survival rates double in the last forty years.
* Cancer Research UK supports research into all aspects of cancer through the work of over 4,000 scientists, doctors and nurses.
* Together with its partners and supporters, Cancer Research UK's vision is to beat cancer.

For further information about Cancer Research UK's work or to find out how to support the charity, please call 020 7121 6699 or visit

About Leukaemia and Lymphoma Research

Leukaemia and Lymphoma Research is the only national UK charity devoted exclusively to improving treatments, finding cures and learning how to prevent leukemia, Hodgkin's lymphoma and other lymphomas, myeloma and the related blood disorders. Leukaemia and Lymphoma Research receives no government grants and urgently needs to raise over 100 million pounds in the next five years to commit to new research. From basic laboratory research to clinical trials with patients, Leukaemia and Lymphoma Research is committed to saving lives by funding high quality, carefully selected research throughout the UK. Leukaemia and Lymphoma Research currently supports 30 Specialist Programmes in which the groups undertake long-term intensive research into relevant areas of leukemia and the related diseases, often working closely with diagnosis and treatment; more than 200 project grants, which provides short-term funding, usually two-three years, for work on a specific problem; 25 clinical fellowships for the training of outstanding junior doctors in both the treatment and research of leukemia and more than 20 studentships, lectureships and senior fellowships. Further information, including patient information booklets, is available from or on 020 7405 0101.

About the EME Programme

The Efficacy and Mechanism Evaluation programme supports later-phase "science-driven" clinical trials and evaluative studies, which seek to determine whether a health intervention (e.g. a drug, diagnostic technique or device) works and in some cases how or why it works.

The NIHR provides the framework through which the research staff and research infrastructure of the NHS in England is positioned, maintained and managed as a national research facility. The NIHR provides the NHS with the support and infrastructure it needs to conduct first-class research funded by the Government and its partners alongside high-quality patient care, education and training. Its aim is to support outstanding individuals (both leaders and collaborators), working in world class facilities (both NHS and university), conducting leading edge research focused on the needs of patients.

The Medical Research Council is dedicated to improving human health through excellent science. It invests on behalf of the UK taxpayer. Its work ranges from molecular level science to public health research, carried out in universities, hospitals and a network of its own units and institutes. The MRC liaises with the Health Departments, the National Health Service and industry to take account of the public's needs. The results have led to some of the most significant discoveries in medical science and benefited the health and wealth of millions of people in the UK and around the world.

SOURCE: Inovio Pharmaceuticals

La Merie Biologics

FREE Weekly News Bulletin

Sign Up

2022 Sales ofAntibodies & Proteins

New Product Alert

For La Merie Publishing

Sign Up