New In Vivo and In Vitro Results Provide Further Validation of Lpathomab as Potential Treatment for Cancer
SAN DIEGO, CA, USA | April 20, 2009 | Lpath, Inc. (OTCBB: LPTN), the category leader in bioactive-lipid-targeted therapeutics, reported compelling new in vivo and in vitro results relating to its preclinical drug candidate, Lpathomab, in various ovarian cancer studies. The results were presented today by Lpath scientists at the 100th Annual Meeting of the American Association for Cancer Research (AACR) in Denver, Colorado.
Lpathomab is a monoclonal antibody that binds to the bioactive lipid lysophosphatidic acid (LPA) and acts as a molecular sponge to absorb LPA, thereby neutralizing LPA-mediated biological effects on tumor growth, angiogenesis, and metastasis. LPA has been associated with a variety of cancer types, but the correlation with ovarian cancer and breast cancer has been particularly strong.
Using the human ovarian cell line called SKOV3, Lpath’s preclinical studies demonstrated Lpathomab significantly reduced IL-8 and IL-6 cytokine release in SKOV3-conditioned media and blocked tumor-cell migration triggered by LPA (both IL-8 and IL-6 promote tumor angiogenesis and metastasis). More important, Lpathomab inhibited the progression of SKOV3 tumor cells when injected into the peritoneal cavity of mice and reduced levels of pro-metastatic factors in these animals.
Lpathomab also reduced neovascularization (new blood-vessel growth) in two classical angiogenic models and showed preliminary anti-metastatic activity when tested in a classical experimental metastasis model.
According to Roger Sabbadini, Ph.D., Lpath’s founder and chief scientific officer, "In view of these promising preclinical results, we believe Lpathomab has the potential to augment the efficacy of current ovarian cancer therapy by blocking the growth-promoting, angiogenic, and metastatic effects of LPA."
About Lpath
San-Diego-based Lpath, Inc. is the category leader in bioactive-lipid-targeted therapeutics, an emerging field of medical science whereby bioactive signaling lipids are targeted for treating important human diseases. ASONEP(TM), an antibody against Sphingosine-1-Phosphate (S1P), is currently in a Phase 1 clinical trial in cancer patients and also holds promise against multiple sclerosis and various other disorders. ASONEP is being developed with the support of partner Merck-Serono as part of a worldwide exclusive license. A second product candidate, iSONEP(TM) (the ocular formulation of the S1P antibody), has demonstrated superior results in various preclinical models of age-related macular degeneration (AMD) and retinopathy and is in a Phase 1 clinical trial in wet-AMD patients. Lpath’s third product candidate, Lpathomab(TM), is an antibody against lysophosphatidic acid (LPA), a key bioactive lipid that has been long recognized as a valid disease target (cancer, neuropathic pain, fibrosis). The company’s unique ability to generate novel antibodies against bioactive lipids is based on its ImmuneY2(TM) drug-discovery engine, which the company is leveraging as a means to expand its pipeline. For more information, visit www.Lpath.com
SOURCE: Lpath, Inc.
Post Views: 542
New In Vivo and In Vitro Results Provide Further Validation of Lpathomab as Potential Treatment for Cancer
SAN DIEGO, CA, USA | April 20, 2009 | Lpath, Inc. (OTCBB: LPTN), the category leader in bioactive-lipid-targeted therapeutics, reported compelling new in vivo and in vitro results relating to its preclinical drug candidate, Lpathomab, in various ovarian cancer studies. The results were presented today by Lpath scientists at the 100th Annual Meeting of the American Association for Cancer Research (AACR) in Denver, Colorado.
Lpathomab is a monoclonal antibody that binds to the bioactive lipid lysophosphatidic acid (LPA) and acts as a molecular sponge to absorb LPA, thereby neutralizing LPA-mediated biological effects on tumor growth, angiogenesis, and metastasis. LPA has been associated with a variety of cancer types, but the correlation with ovarian cancer and breast cancer has been particularly strong.
Using the human ovarian cell line called SKOV3, Lpath’s preclinical studies demonstrated Lpathomab significantly reduced IL-8 and IL-6 cytokine release in SKOV3-conditioned media and blocked tumor-cell migration triggered by LPA (both IL-8 and IL-6 promote tumor angiogenesis and metastasis). More important, Lpathomab inhibited the progression of SKOV3 tumor cells when injected into the peritoneal cavity of mice and reduced levels of pro-metastatic factors in these animals.
Lpathomab also reduced neovascularization (new blood-vessel growth) in two classical angiogenic models and showed preliminary anti-metastatic activity when tested in a classical experimental metastasis model.
According to Roger Sabbadini, Ph.D., Lpath’s founder and chief scientific officer, "In view of these promising preclinical results, we believe Lpathomab has the potential to augment the efficacy of current ovarian cancer therapy by blocking the growth-promoting, angiogenic, and metastatic effects of LPA."
About Lpath
San-Diego-based Lpath, Inc. is the category leader in bioactive-lipid-targeted therapeutics, an emerging field of medical science whereby bioactive signaling lipids are targeted for treating important human diseases. ASONEP(TM), an antibody against Sphingosine-1-Phosphate (S1P), is currently in a Phase 1 clinical trial in cancer patients and also holds promise against multiple sclerosis and various other disorders. ASONEP is being developed with the support of partner Merck-Serono as part of a worldwide exclusive license. A second product candidate, iSONEP(TM) (the ocular formulation of the S1P antibody), has demonstrated superior results in various preclinical models of age-related macular degeneration (AMD) and retinopathy and is in a Phase 1 clinical trial in wet-AMD patients. Lpath’s third product candidate, Lpathomab(TM), is an antibody against lysophosphatidic acid (LPA), a key bioactive lipid that has been long recognized as a valid disease target (cancer, neuropathic pain, fibrosis). The company’s unique ability to generate novel antibodies against bioactive lipids is based on its ImmuneY2(TM) drug-discovery engine, which the company is leveraging as a means to expand its pipeline. For more information, visit www.Lpath.com
SOURCE: Lpath, Inc.
Post Views: 542